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Abstract

In this paper, an explicit formulation of the incremental harmonic balance (IHB) scheme for
computation of periodic solutions of a harmonically excited oscillator which is asymmetric with both
stiffness and viscous damping piecewise linearities is derived. Analysis of dynamical behavior as bifurcation
and chaos of the non-linear vibration system considered is effectively carried out by the IHB procedure,
showing that the system exhibits chaos via the route of period-doubling bifurcation, with coexistence of
multiple periodic attractors observed and analyzed by the interpolated cell mapping method. In addition,
numerical simulation by the IHB method is compared with that by the fourth order Runge–Kutta
numerical integration routine, which shows that this method is in many respects distinctively advantageous
over classical approaches, and especially excels in performing parametric studies.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In mechanical vibrating systems like lightly loaded spur gears, rotor systems, relaxation
oscillator systems, cam/follower systems, linkage joints and robotic components, bearings and
impact print hammers, piecewise linearity or piecewise-non-linearity exists due to clearances,
gaps, backlash and impacting components, etc. In other fields of electronics, biology, economy,
the theoretical models of many non-linear dynamical problems are also found to be systems
having piecewise features [1–4].
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As revealed by the motion of a mooring tower with bilinear stiffness characteristics of the
mooring line studied by Thompson, systems with a piecewise linearity may exhibit very complex
dynamical behavior [5,6]. Some higher dimensional piecewise-linear circuits have even been found
to display hyperchaos [7,8]. Though it is well known that the free vibrations of piecewise-linear
dynamical systems can be solved exactly by gluing together the solutions in each linear zone, it is
not yet feasible to obtain a closed-form solution for an excited steady state vibration. Classical
perturbation methods such as Lindstedt–Poincare, Krylov–Bogoliubov–Mitropolsky, or multiple
scale method [9] are valid only when the non-linearity of the considered dynamical system is weak.
Though the harmonic balance method can deal with systems with strong non-linearity, the scheme
must be reformulated when more harmonic terms are taken in order to get more accurate periodic
solutions. Other numerical approaches like the fourth order Runge–Kutta integration method are
usually time consuming when performing parametric studies, especially when the rate of
convergence is very low.
Based on an incremental Hamilton’s principle, a versatile and systematic computer

implementation for treating periodic structural vibrations of elastic systems was developed by
Cheung and Lau [10]. Compared with classical approaches, the incremental harmonic balance
(IHB) method is not confined to small exciting parameters and weak non-linearity, and is
remarkably effective in computer implementation for obtaining response with a desired accuracy
over a wide range of varying parameter, with both stable and unstable solutions, subharmonic,
harmonic and superharmonic resonances being traced directly. Ever since its derivation, the IHB
method has found application in a wide range of dynamical systems. In Ref. [11], solution
diagrams of van der Pol oscillator are plotted using this method. In Refs. [12,13], the method is
applied, respectively, to the analysis of bifurcation and chaos of an escape equation model and an
articulated loading platform with piecewise-non-linear stiffness. In Ref. [14], by expansion of the
sign non-linearity for small increments, the IHB method is modified to perform a multi-harmonic
frequency-domain analysis of dry friction damped systems. In Ref. [15], periodic limit cycles of a
non-linear oscillator subjected to periodic excitation are analyzed where the stiffness of the system
is of unsymmetrical piecewise linearity. In Ref. [16], the IHB method is further extended to the
periodic vibrations of non-linear systems with a general form of piecewise-linear restoring force,
which is of great significance as many structural and mechanical systems of practical interest
possess a piecewise-linear stiffness.
In this paper, the IHB computation scheme is derived for a class of single-degree-of-freedom

(d.o.f.) systems with coexistence of stiffness and viscous damping piecewise linearities, showing
great accuracy compared with the result of direct numeric integration method. As many systems
possess both stiffness and damping non-linearities, the formulation in the paper can readily be
applied to the analysis of complex dynamical behaviors as bifurcation and chaos of such systems
in engineering practice.

2. Piecewise-linear dynamical system

The non-linear oscillator considered here is a single-d.o.f. vibration system as shown in Fig. 1,
with both stiffness and viscous damping piecewise linearities, which serves as the model for a wide
range of piecewise-linear vibration systems in engineering practice. Complex dynamical properties
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such as the static bifurcation and periodic-doubling bifurcation to chaos of the system have been
studied in Ref. [17] by the theory of singularity, Runge–Kutta numerical integration method and
Poincare map.
Suppose that without the mass m; the two free springs would just touch each other. For the

damper and the linear spring which are at the left side of the mass and connected to it, and those
at the right side and not connected to it, their respective damping or stiffness are denoted by c0; k0;
c1; k1: Assume that when the oscillator is at the state of static equilibrium, d0; d; respectively,
denote the compression of the spring at both sides and thus k0d0 ¼ k1d: Let the displacement x
denote the co-ordinate of the right edge of the mass relative to the fixed point O; which itself is the
position of the right edge at static equilibrium, the system is represented by the following control
equation:

m
d2x

dt2
þ h

dx

dt

� �
þ gðxÞ ¼ f0 sinot; ð1Þ

h
dx

dt

� �
¼

c0 þ c1ð Þ
dx

dt
; x > �d;

c0
dx

dt
; xp� d;

8>><
>>: g xð Þ ¼

ðk0 þ k1Þx; x > �d;

k0ðx � d0Þ; xp� d:

(

For convenience, the piecewise-linear viscous damping force hðdx=dtÞ and the restoring force gðxÞ
are reformulated as the following form:

h
dx

dt

� �
¼ c0

dx

dt
þ H

dx

dt

� �� 	
; gðxÞ ¼ k0x þ GðxÞ; ð2Þ

H
dx

dt

� �
¼

c1

c0

dx

dt
; x > �d;

0; xp� d;

8<
: GðxÞ ¼

k1x; x > �d;

�k1d; xp� d:

(

By letting a new time scale t ¼ ot; frequency ratio O ¼ ðo=
ffiffiffiffiffiffiffiffiffiffiffi
k0=m

p
Þ; damping ratio z ¼

ðc0=2
ffiffiffiffiffiffiffiffiffi
mk0

p
Þ; and noting that the piecewise-linear function Hðdx=dtÞ is homogeneous with respect

to dx=dt; thus Hðodx=dtÞ ¼ oHðdx=dtÞ; Eq. (1) is transformed into

O2d
2x

dt2
þ 2zO

dx

dt
þ x þ 2zOH

dx

dt

� �
þ

1

k0
GðxÞ ¼

1

k0
f0 sin t: ð3Þ
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It is obvious that when the peak amplitude of the steady periodic solution of Eq. (3) is less than d;
the linear springs at both sides will function simultaneously thus system (3) equals to a linear
system. Only when the peak amplitude is larger than d; can Eq. (3) exhibit complex dynamical
behavior characteristic of non-linear systems.

3. IHB scheme of the piecewise-linear system

With regard to the piecewise-linear differential system (3), by a Newton–Raphson proce-
dure, assume that x0ðtÞ stands for an initially approximated vibrating state corresponding
to the excitation parameters O0 and the excitation level f0 is fixed, a neighboring state may be
denoted by

xðtÞ ¼ x0ðtÞ þ DxðtÞ; O ¼ O0 þ DO; ð4Þ

where DxðtÞ and DO are small increments.
Correspondingly, the piecewise-linear function Hðdx=dtÞ and GðxÞ may be expressed by a first

order Taylor expansion as

H
dx

dt

� �
¼ H

dx0

dt

� �
þ H 0 dx0

dt

� �
dDx

dt
; GðxÞ ¼ Gðx0Þ þ G0ðx0ÞDx; ð5Þ

where

H 0 dx0

dt

� �
¼

c1

c0
; x0 > �d;

0; x0p� d;

8<
: G0ðx0Þ ¼

k1; x0 > �d;

0; x0p� d:

(

By substituting expressions (4), (5) into Eq. (3) and neglecting the non-linear terms of the small
increments, Eq. (3) becomes linearized as

O2
0

d2Dx

dt2
þ 2zO0

dDx

dt
þ Dx þ 2zO0H

0 dx0

dt

� �
dDx

dt
þ

1

k0
G0ðx0ÞDx ¼ %R þ DO %S; ð6Þ

where

%R ¼ � O2
0

d2x0

dt2
þ 2zO0

dx0

dt
þ x0 þ 2zO0H

dx0

dt

� �
þ

1

k0
Gðx0Þ �

1

k0
f0 sin t

� 	
;

%S ¼ �2O0
d2x0

dt2
� 2z

dx0

dt
� 2zH

dx0

dt

� �
; ð7Þ

where %R is the corrective term which goes to zero when the solution is reached.
Though Eq. (6) is linear, there are variable coefficients due to piecewise linearity of the damping

force and restoring force, thus it does not seem feasible to solve directly, hence a Galerkin
procedure is carried out as follows. Both the approximate initial periodic solution and its small
increment may be expressed as

x0 ¼
a0

2
þ

XN

n¼1

ðan cos ntþ bn sin ntÞ; Dx ¼
Da0

2
þ

XN

n¼1

ðDan cos ntþ Dbn sin ntÞ; ð8Þ
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where N is the number of harmonic terms taken in the limited Fourier series. By taking Dan’s,
Dbn’s as the generalized co-ordinates, it is derived from Eq. (6) thatZ 2p

0

O2
0

d2Dx

dt2
þ 2zO0

dDx

dt
þ Dx þ 2zO0H

0 dx0

dt

� �
dDx

dt
þ

1

k0
G0ðx0ÞDx

� 	
dðDxÞ dt

¼
Z 2p

0

%R þ DO %S
� �

dðDxÞ dt; ð9Þ

which is equivalent to a system of 2N þ 1 linearized equations with the Dan’s and Dbn’s being
variables

CDa ¼ R þ DOS; ð10Þ

where

a ¼ a0; a1;y; aN ; b1; b2;y; bN½ �T; Da ¼ Da0;Da1;y;DaN ;Db1;Db2;y;DbN½ �T;

C ¼
CL

11 þ CNL
11 CL

12 þ CNL
12

CL
21 þ CNL

21 CL
22 þ CNL

22

" #
; R ¼

RL
1 þ RNL

1

RL
2 þ RNL

2

" #
; S ¼

SL
1 þ SNL

1

SL
2 þ SNL

2

" #
: ð11Þ

The explicit expressions for the linear elements of the above matrices C; R; and S are worked out
the same as in Ref. [16], while in this case, the matrix S contains both linear and non-linear parts
due to the piecewise-linear damping force

CL
11ij ¼ ajdijpð1� j2O2

0Þ ði ¼ 0; 1;y;N; j ¼ 0; 1;y;NÞ;

CL
12ij ¼ 2jdijpzO0 ði ¼ 0; 1;y;N; j ¼ 1;y;NÞ;

CL
21ij ¼ �2jdijpzO0 ði ¼ 1; 2;y;N; j ¼ 0; 1;y;NÞ;

CL
22ij ¼ dijpð1� j2O2

0Þ ði ¼ 1; 2;y;N; j ¼ 1;y;NÞ;

RL
1i ¼ �ai ð1� i2O2

0Þai þ 2izO0bi

� �
p ði ¼ 0; 1;y;NÞ;

RL
2i ¼ � ð1� i2O2

0Þbi � 2izO0ai �
f0

k0

� 	
p ði ¼ 1Þ;

RL
2i ¼ � ð1� i2O2

0Þbi � 2izO0ai

� �
p ði ¼ 2;y;NÞ;

SL
1i ¼ 2piðiO0ai � zbiÞ ði ¼ 0; 1;y;NÞ;

SL
2i ¼ 2piðiO0bi þ zaiÞ ði ¼ 0; 1;y;NÞ;

ð12Þ

where

dij ¼
1; i ¼ j;

0; iaj;

(
an ¼

1; n ¼ 0;

1=2; na0:

(
ð13Þ
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The non-linear parts in Eq. (11) are expressed by

CNL
11ij ¼ �2jaizO0

Z 2p

0

H 0 dx0

dt

� �
cos it sin jt dtþ

aiaj

k0

Z 2p

0

G0ðx0Þ cos it cos jt dt;

CNL
12ij ¼ 2jaizO0

Z 2p

0

H 0 dx0

dt

� �
cos it cos jt dtþ

ai

k0

Z 2p

0

G0ðx0Þ cos it sin jt dt;

CNL
21ij ¼ �2jzO0

Z 2p

0

H 0 dx0

dt

� �
sin it sin jt dtþ

aj

k0

Z 2p

0

G0ðx0Þ sin it cos jt dt;

CNL
22ij ¼ 2jzO0

Z 2p

0

H 0 dx0

dt

� �
sin it cos jt dtþ

1

k0

Z 2p

0

G0ðx0Þ sin it sin jt dt;

RNL
1i ¼ �2aizO0

Z 2p

0

H
dx0

dt

� �
cos it dt�

ai

k0

Z 2p

0

Gðx0Þ cos it dt;

RNL
2i ¼ �2zO0

Z 2p

0

H
dx0

dt

� �
sin it dt�

1

k0

Z 2p

0

Gðx0Þ sin it dt;

SNL
1i ¼ �2aiz

Z 2p

0

H
dx0

dt

� �
cos it dt; SNL

2i ¼ �2z
Z 2p

0

H
dx0

dt

� �
sin it dt:

ð14Þ

The evaluation of these piecewise-linear integrals in programming can be achieved explicitly by a
procedure using bisection and interpolation method, which has been well expounded in Ref. [16].
The O-incrementation procedure for obtaining the frequency response curve of a dynamical
system may be carried out by incrementing O from point to point, which implies that DO ¼ 0
though the iteration process at every point, leading to the following equations:

CðiÞDaðiþ1Þ ¼ RðiÞ; aðiþ1Þ ¼ aðiÞ þ Daðiþ1Þ: ð15Þ

Being reevaluated in terms of the ði þ 1Þth amplitude vector aðiþ1Þ; the matrices Cðiþ1Þ; Rðiþ1Þ are
updated at every increment.
From the derivation of the IHB computation scheme, it can be seen that N; that is, number of

harmonics taken in the limited Fouries series, is incorporated into the iteration process as an
independent parameter, and thus can be conveniently varied according to the required precision,
facilitating programming in computer simulation.

4. Numerical simulation

As already tested and evaluated in many relevant papers, the IHB method for computing
periodic solutions of non-linear dynamical systems is distinctively advantageous over classical
approaches. The fundamental and superharmonic resonances are directly obtained from the
Fourier expansion of xðtÞ: To obtain the mth order subharmonic resonances, one simply shifts the
excitation force to f0 sin mðotÞ: The amplitudes of vibration may be expressed either as peak
amplitudes per cycle or as the norm of the harmonic components which is indicative of the total
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energy of the motion. As to system (3), the control parameter is taken as k ¼ k0 	 10�3; where k0

is the stiffness of the linear spring at the left side of the mass, and other parameter values are fixed
as

f0 ¼ 7:8	 103; m ¼ 0:4	 103; k1 ¼ 0:9	 106;

c0 ¼ 0:05	 103; c1 ¼ 0:5	 103; d ¼ 5	 10�3; o ¼ 34:56: ð16Þ

It is easily found that when k is very large, which means that the spring at the left side of the mass
is quite rigid, the peak amplitude of the steady periodic state of the oscillator will not exceed d;
thus the system equals to a linear system with period-1, corresponding to the period of the
external harmonic excitation. In the following study, this trivial case will be ignored and k is
designated to be relatively small, varying in the range [2,20]. By the IHB scheme (15), the peak
amplitudes of the different periodic responses can be plotted as a function of the bifurcation
parameter and the response diagram is shown in Fig. 2.
In Fig. 2(a), with a decreasing value of k; a double-period-2 process of the considered

continuous piecewise-linear system is observed which is similar to the behavior of the well-known
one-dimensional discrete system given by logistic map. Starting from point ‘a’ corresponding to
k ¼ 19:5; the system exhibits a period-2 response corresponding to the period of the external
harmonic excitation until the point ‘b’, when k ¼ 5:2: At this point the period-2 solution
bifurcates to a period-4 solution through a period-doubling bifurcation confirmed by noting that
the eigenvalue of the monodromy matrix moves out of the unit circle in the �1 direction. The
period-4 solution further bifurcates into a period-8 solution at point ‘c’ when k ¼ 3:1: In Fig. 2(b),
a period-3 response curve is traced by the IHB scheme over the range of bifurcation parameter
[2,5] in which a period-4 or 8 solution coexists as shown in Fig. 2(a). This is important in the light
of the famous assertion by Li–Yorke, that is ‘period-three means chaos’ [18]. The initial condition
map corresponding to the coexistent period-4 and period-3 solution at k ¼ 4:5 is obtained by the
interpolated cell mapping method [19] shown in Fig. 3. Starting from initial conditions
corresponding to the blank space ends up in the period-4 attractor, while solutions starting from
the shaded region result in the period-3 attractor. In the generation of the above curves, the IHB
method uses an initial guess of the amplitude vector and iterates until convergence is achieved,
and the following rate of convergence is then remarkably improved by choosing the initial guess
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Fig. 2. Response curve of the system: (a) period-doubling bifurcation and (b) coexistence of period-3 response.
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of the amplitude vector to be the already converged vector from a neighboring bifurcation
parameter.
The accuracy of the IHB method is evaluated here by comparing the results against those of

existing time domain analysis. In this case, a fourth order Runge–Kutta numerical integration
routine is used to provide an accurate basis for comparison. The phase planes of the steady
periodic responses with different period at different values of k are given in Fig. 4, where the solid
lines and the discrete dotted marks respectively stand for the solutions obtained by the IHB
method and the numeric integration procedure. The norm of the residue vector and increments of
the Fourier coefficients in the IHB method are reduced to less than 1:0	 10�5 in obtaining all
these solutions, and it can be seen that there is an excellent fit between the IHB solutions and the
numerically integrated ones. In the meanwhile, the small circles in the figures above denote the
fixed points of the corresponding solutions with different period, which are obtained by the
Poincar!e map of the non-autonomous system (3):

’x ¼ y;

’y ¼ x þ
1

k0
GðxÞ þ 2zOy þ 2zOHð ’yÞ �

1

k0
f0 sin y

� 	
=O2;

’y ¼ 1: ð17Þ

It is observed that from Figs. 4(a)–(c), the fixed points undergo successive double-period-2
bifurcation from period-2 to period-8 with decreasing bifurcation parameter values.
Successive decreasing values of the bifurcation parameter k will give rise to further period-

doubling bifurcation process of the system, which will at last ends up in a chaotic state as shown in
Fig. 5. This typical route to chaos is well researched in the one-dimensional discrete mapping
systems like the famous logistic map [20]. On the other hand, higher dimensional systems do
possess dynamical properties which lower ones do not have. In the case considered, for example,
coexistence of attractors as shown in Fig. 3 is denied to the logistic map.
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5. Conclusion

In this paper, the incremental harmonic balance (IHB) method is successfully extended to a
class of non-linear dynamical systems with coexistence of stiffness and viscous damping piecewise
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linearity for computing periodic solutions, which is in many respects distinctively advantageous
over classical approaches. Numerical simulation of the harmonically excited oscillator is
effectively carried out by the IHB scheme, and the results compare very well with that by the
fourth order Runge–Kutta numerical integration routine. A parametric study performed by the
IHB method reveals that the system exhibit chaos via the typical route of period-doubling
bifurcation similar to that of the well-known one-dimensional logistic map. In the meanwhile, the
distinctive phenomenon of coexistence of multiple periodic attractors is observed and analyzed by
the interpolated cell mapping method.
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